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A Monte Carlo method, developed originally to calculate thermodynamic properties 
in a grand canonical ensemble of lattice systems containing molecules which have finite 
mutual attractions, has been modified for studying lattice systems in which the inter- 
molecular potential is an infinite repulsion. The grand ensemble formulation is reviewed 
briefly, and equations are given for a specific choice of transition probabilities defining 
a Markov process with a stationary distribution which is identical to the probability 
distribution of states in the grand ensemble. Results are presented for “hard hexagons” 
on the two-dimensional triangular lattice. For hexagons of a size that prevents simul- 
taneous occupation of a pair of nearest-neighbor sites by two molecules, the results indic- 
ate a possible second-order phase transition for p/kT % 2.3 at a density around 82 % 
of the close-packed density. The existence, nature, and location of this transition have 
been more firmly established by Runnels and Combs, and by Gaunt, using other tech- 
niques. For larger hexagons excluding simultaneous second-neighbor occupancy, 
an apparent first-order transition occurs at p/kT M 1.68, with “fluid” and “solid” 
densities of about 69 % and 77 % of the close-packed density. These results agree, except 
for the effects of finite lattice size, with those extrapolated by Orban and Bellemans 
from exact calculations for semi-infinite lattices. When third neighbors are excluded 
also, the Monte Carlo results give no indication of a transition. However, Orban and 
Bellemans have estimated that the transition in this case occurs at p/kT w 4.6, well 
above the value (about 3.0) where convergence of this particular Monte Carlo method 
becomes too slow for practical use. 

1. INTRODUCTION 

During the past Cfteen years, much effort has been devoted to calculating the 
thermodynamic properties of molecular systems, such as hard spheres and hard 
discs, for which the intermolecular pair potential is infinite over a short range of 
the distance separating the pair, and is identically zero at larger distances. Interest 
in these simple models lies primarily in the realization that the basic obstacles which 
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still prevent a complete theoretical understanding of nonideal fluids reside in the 
purely statistical problems connected with calculating an accurate description of 
average behavior for any assembly of interacting particles. Thus, it has become 
common practice to construct a “caricature” of real molecules which provides a 
mathematical or computational advantage while retaining, in some sense, those 
features of physical reality in which one is particularly interested (e.g., the occur- 
rence of phase transitions). One always hopes that this simplification will allow 
the use of analytical methods, either exact or comprising a well-defined sequence 
of successive approximations, which will be powerful enough to yield quantitative 
solutions to the statistical problems. Also of interest is the growing body of evidence 
suggesting that some of the essential features of real fluid-solid phase transitions 
are more nearly duplicated by accurate calculations for these hard-core potentials 
than by approximate theories using more realistic potentials. 

An even simpler model is obtained if one replaces a system whose molecular coor- 
dinates vary continuously with one in which the molecules can occupy only discrete 
points in space, thus constructing a “lattice-gas” analog of the original “conti- 
nuum” system. Since any computer is limited to a finite number of significant 
figures for representing molecular coordinates, all computer experiments, such 
as the Monte Carlo [l-l I] and molecular dynamics [12-l 81 studies, are really 
lattice-gas calculations, but the lattice spacing is extremely small compared to 
the size of the molecular hard core, which typically spans about IO* sites. We are 
concerned here with making this simplification much more extreme (so that the 
core spans only a small number of sites) byjbrmuluting the problem in terms of a 
lattice model. One can then use computational tricks peculiar to lattice systems 
which allow sampling of molecular configurations at rates perhaps two orders of 
magnitude faster than one can attain for “continuum” models with a given 
computer. 

In Section 2, the particular type of hard-core models considered is described, 
as well as the specific case of the two-dimensional triangular lattice used for all 
the numerical results presented in Section 4. 

Section 3 presents the considerations involved in choosing an ensemble for the 
Monte Carlo calculations and summarizes the grand ensemble formualtion used. 
The particular Markov process chosen is defined by giving its transition proba- 
bilities. Finally, the thermodynamic functions considered are expressed in terms of 
averages over a Markov chain realization. 

Results are presented and discussed in Section 4 for three hard-core models on 
the triangular lattice, with the hard core large enough to exclude simultaneous 
occupancy of first-, second-, and third-neighbor pairs of lattice sites, respectively. 
These models have also been studied by Gaunt [19], Runnels and Combs [20], and 
by Orban and Bellemans [21]. Consideration of all the available data, including 
the Monte Carlo results presented here, supports the conclusions that the first- 
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neighbor model has a “second-order” phase transition with an infinite com- 
pressibility and that the second-neighbor model has a first-order transition. No 
transition is indicated for the third-neighbor model, probably because it occurs 
at a higher density than could be studied with the particular Monte Carlo 
procedure described in Section 3. 

2. HARD-CORE LATTICE GAS MODELS 

Consider any regular lattice containing B lattice sites. The center of each molecule 
contained in the lattice system must coincide with a lattice site. A model with 
Q-th neighbor repulsion is defined as follows: Suppose a molecule is on site s,, . 
Then no other molecule can occupy s,, or any of its 1-st, 2-nd,..., Q-th neighbors, 
but the (Q + l)-st and all higher-order neighbors of s,, may be occupied. This 
restriction is accomplished by associating an infinite potential energy with a pair 
of molecules whose centers are on two sites which are neighbors of order Q or 
less; otherwise, the potential energy is zero. By convention Q = 0 is the “ideal” 
lattice-gas in which molecules cannot occupy the same lattice sites but do not 
otherwise interact, Notice that this does not really define a shape for the molecule; 
only the shape of the exclusion “volume” is prescribed by this recipe. Also, this 
is not a general hard-core lattice model (one can easily think of examples, such as 
dimers on the quadratic lattice, which do not fit within this framework), but this 
choice provides the greatest computational advantage. It should also behave more 
like hard discs or hard spheres than will models having irregularly shaped exclusion 
volumes. 

Numerical results are presented in this paper only for the two-dimensional 
triangular lattice. Example configurations for Q = 1, 2, and 3 are shown in Figs. 
1-3, respectively. In Figs. 1-3, the molecules are represented by shaded hexagons. 
These figures also illustrate the rectangular unit cell used in the Monte Carlo 
calculations. For each case, an almost square area can be constructed, by appro- 
priate choice of the number of unit cells (m, n) along the two primitive vectors of 
the lattice. This will minimize “surface” effects, as well as making these effects 
conform as closely as possible to molecular dynamics [IS] and Monte Carlo [ll] 
calculations for hard discs. For the usual reason that they furnish maximum 
computational simplicity, periodic boundary conditions have been imposed in all 
calculations described below. 

Although the molecules have been represented in Figs. l-3 as “hard hexagons”, 
this interpretation is not unique and may even be misleading since it could lead 
to an erroneous conclusion regarding the limiting particle shape as more and more 
neighbor sites are excluded. The central question is whether the thermodynamic 
properties of the lattice model will approach a continuum limit of hard discs or 
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of parallel hard hexagons. The construction used for drawing the hexagons 
characterized by a Q-th neighbor repulsion depends upon the coordination 
number of the (Q + I)-st neighbor shell, Zo+l . For 1 < Q < 18, 2, is either 
6 or 12. When Zo+l = 6, the hexagon sides are formed by the perpendicular 
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FIG. 1. “Hard-Hexagon” lattice gas with first-nearest neighbor infinite repulsion. Molecules 
are represented by the shaded hexagons. The small rectangles are the unit cells used for the two- 
dimensional triangular lattice, and the dots represent lattice sites. Each cell contains two sites: 
One at its lower left-hand comer, and one at its center. 
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FIG. 2. “Hard-Hexagon” lattice gas with second-nearest neighbor infinite repulsion (see also 
the caption of Fig. 1). 
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FIG. 3. “Hard-Hexagon” lattice gas with third-nearest neighbor infinite repulsion (see also 
the caption of Fig. 1). The auxiliary coordinate system (with origin 0’ and axes & and &) shows 
the construction described in Section 2 for replacing the representation of molecules as hexagons 
by a representation as hard discs excluding the same neighboring sites. The two dashed circles 
give two examples of hard-disc molecules and show the first step in generating an infinite close- 
packed configuration with a molecule at the origin. The diameter of the circles is equal to the 
magnitude of the vector r4 , which begins at the origin and extends to the 4th neighbor site nearest 
the positive go axis. 

bisectors of lines joining a central site with its 6 (Q + 1)-st neighbors. For 
z o+r = 12, all 12 lines joining the central site with the 12 (Q + I)-st neighbors 
are drawn, and their midpoints are marked. These lines will naturally form six 
pairs if one takes as pairs those lines enclosing the smallest angle. The midpoints of 
the two lines in each pair are then connected and extended until all the extensions 
intersect, thus forming a hexagon. This prescription would, of course, require 
modification for Zo+l # 12 or 6. A modification is unnecessary, however, because 
the attempt to represent molecules as hexagons breaks for another reason at 
Q = 10, when Zo+I = Z,, = 6.l A correct representation can always be obtained 
by regarding the molecules as hard discs whose centers are restricted to lattice 
points. Consider a close-packed array of hard discs with diameter u, and set u 

1 The interested reader can easily satisfy himself, with the aid of a few sheets of isometric graph 
paper, that the recipe described above will generate hexagonal molecules which correctly represent 
the Q-th neighbor repulsion for Q < 10. “Correct representation” here means that the molecules 
must have an exclusion shell containing all sites which are neighbors of order Q or less but no 
others. For Q = 10, two hexagons constructed according to the given rules could not occupy 
12-th neighbor sites. 
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equal to rQfl , the (Q + I)-st neighbor distance for the desired triangular lattice. 
This defines the spacing of the underlying triangular lattice in terms of u. 

The orientation of the triangular net can be specified by the following recipe. 
Consider the usual triangular coordinate system &, & with an angle rr/3 included 
between the axes in the positive direction. Let rO+l be the vector (of length u) from 
the origin 0 to the (Q + I)-st neighbor site of 0 which is nearest the positive &, axis. 
Let 0 be the positive angle that ro+l makes with go .2 Note that 0 < 0 < r/3. If 
there are 6 (Q + 1)-st neighbors, then 0 = 0. The close-packed configuration of 
discs can be generated by placing their centers on the 6 (Q + I)-st neighbor sites 
which can be reached by vectors of length u at angles 6’ + (n~r/3), n = 0, 1,2, 3,4, 5. 
Thus, it is possible to completely determine the underlying triangular lattice for a 
given disc diameter o, or, given the lattice, to choose o in such a way that a pair 
of discs cannot occupy neighbor sites of order Q or less but (Q + 1)-st, 
(Q + 2)-nd... neighbor pairs can be occupied. Since this is exactly the pair potential 
used above to define the hard-core model, this model is properly regarded as a 
numerical integration procedure for approximating the continuum model of hard 
discs rather than of parallel hard hexagons even though either interpretation is 
valid for sufficiently small Q. 

3. MONTE CARLO PROCEDURE FOR THE HARD-CORE LATTICE MODEL 

Choice of Ensemble 

Previous Monte Carlo studies of lattice models have used the petit canonical 
ensemble [22], the isothermal-isobaric ensemble [23,24], and the grand canonical 
ensemble [25, 261 for systems of molecules interacting with a pair potential which 
is infinite only when two molecules occupy the same lattice site but is otherwise 
finite or zero. In the petit ensemble the average configurational energy and heat 
capacity can be obtained for such potentials in a straightforward way. However, 
the calculation of properties of greater interest in the study of phase transitions 
(e.g., the pressure p and the chemical potential ,u) has so far been possible only 
through the computation of an average which gives estimates for the canonical 
partition function as a function of the number of molecules (N) and the number 
of lattice sites (B) at fixed thermodynamic temperature (T). These estimates can 
then be differentiated numerically with respect to B and N according to standard 
statistical thermodynamic relations to obtain approximate values of p and p 
[22, 271. Since the estimate for the partition function is very poorly behaved at 
best and even fails to converge for moderately large B, this indirect procedure is 
not very useful. To make matters still worse, the numerical method breaks down 

2 The coordinates and the construction for Q = 3 are illustrated by Fig. 3. 
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even in principle for molecules with a finite hard core, and, since there is no con- 
figurational energy for the hard-core lattice models described in Section 2, no 
existing Monte Carlo procedure for the petit ensemble gives any thermodynamic 
information in the form of direct averages. Current Monte Carlo methods for 
estimating the petit ensemble equation of state for “continuum” models cannot 
be extended in any obvious way for application to lattice gases because these 
methods employ the virial theorem, and no definition of a virial is known for 
lattices. Thus, a completely new approach3 is required before useful calculations 
can be performed for hard-core lattice gases in the petit ensemble. By contrast, 
considerable thermodynamic information can be obtained from the grand canonical 
ensemble without a knowledge of the grand partition function, and the Monte 
Carlo procedure previously described in Ref. [25] can be applied to hard-core 
lattice gases with few changes. For these reasons we now turn our attention to the 
grand ensemble. 

Grand Ensemble Formulation 

Although the notation introduced in Ref. [25] could be used here, some simpli- 
fication results from the use of a slightly different notation which is more appro- 
priate for the hard-core models. A linear index s (s = 0, l,..., B - 1) is assigned 
to the lattice sites. In a given state k each of the B sites may be empty or it may be 
occupied by the center of any one of Nk indistinguishable molecules, subject to the 
restrictions given below. A state k of the system is uniquely determined by the 
lattice occupation vector L(k): 

L(k) = II Uk)ll, 0) 

where Z,(k) = 1 if, in state k, site s is occupied by the center of a molecule and is 
equal to zero otherwise. Nk denotes the number of molecules in state k and is 
given by 

B-1 

ff,c = c l,(k). (2) 
S=O 

Allowing the elements l,(k) to assume only the values 0 or 1 ensures that the center 
of at most one molecule will be on a given lattice site. Accessible states must also 
satisfy the additional restriction imposed by the finite hard core of the molecules, 
which is conveniently formulated as follows: For 1 < 4 < Q, the symmetric 
B x B matrices Z(@ are defined by 

Z(Q) = 11 zy 11 > (3) 
ZJ One possibility is to develop a Monte Carlo procedure based on a formulation given by B. 

Widom, J. C&m. Phys. 39 (1963), 2808 and also by Klein and Jackson, P&S. Fluids 7 (1964), 2281 
relating the chemical potential to the “potential energy distribution” of a fluid. This might be a 
promising approach for lattice models. 
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where zii! = 1 if sites s and s’ are q-th neighbors and is equal to zero otherwise 
The Z(Q) are then combined to form the symmetric B x B exclusion matrix E(Q) 
for Q-th neighbor repulsion: 

where up=- represents the logical union of the Z(Q), element by element. Note that 
e$) is either zero or one; if es3 ‘?’ = 0, both s and s’ may be occupied and if 
e$’ = 1, at most one of the pair s, s’ can be occupied. Then the only accessible 
states k are those for which 

ii?, = L(k) . E(Q) . z(k) = 0, (5) 

where z denotes the transpose of L. For configurations having a nonzero value 
of Sz, , two or more molecules overlap to give an infinite potential energy and hence 
a Boltzmann weight of zero. 

The grand partition function .SYB for the hard-core lattice gas is defined by 

(6) 

where p is the chemical potential per molecule, /3 = (/X-l, k is the Boltzmann 
constant, T is the thermodynamic temperature, and 6, D is the Kronecker delta. 
The probability that a system selected at random fromkthe grand ensemble will 
be in state k is then 

pk@/-b B) = %’ &I,,, exp(~l*~k)~ 

and the grand ensemble average (y} for a state function y(k) is 

<Y> = xPkY&)* 

(7) 

(8) 
k 

We shall also make use of the density function, 

which gives the probability of selecting a system containing exactly N molecules 
from the grand ensemble. 

The Markov Process 

The reader who is not already familiar with the general features of Monte 
Carlo methods, as used in statistical mechanics, may wish to consult a previous 
paper by Wood and Parker [28] for a more complete discussion of its theoretical 
basis. Only a brief description will be given here. In statistical mechanical 
applications, one first constructs a stochastic matrix 11 P,, jl defining a discrete-time 
finite Markov process (or chain) which has the desired ensemble density function 
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as its stationary distribution. Element Pi, represents the probability that a transition 
from state j to state k will occur at any particular single step of the chain. A digital 
computer is then used to develop a realization of this Markov chain, i.e., a particular 
sequence of W + 1 states k(O), k(1) ,..., k(t) ,..., k(W). The arbitrary initial state is 
k(0); succeeding states are generated according to the Pi, by appropriate use of 
pseudorandom number sequences. The average of any state function y(k) can 
be written as 

j = (W - 7 + 1)-l c” J@(t)]. (10) 
t=r 

It is computed for the realization (where the averaging process is initiated at 
step 7 3 1) and converges stochastically (for any fixed T) as W+ co to the cor- 
responding ensemble average (u). An estimate for the variance ofp can be obtained 
by noting that the realization of total length W may be considered as a set of con- 
secutive subrealizations of fixed arbitrary length d W. The function y(k) is averaged 
separately over each subrealization to produce a sequence of subchain averages 
that become statistically independent and normally distributed if d W is “large 
enough”. The subchain averages may therefore be processed by familiar statistical 
methods for small samples to estimate the variance of 7. 

For our present purposes we require a Markov process which has the grand 
ensemble density function Pk , given by Eq. (7), as its stationary distribution. 
As usual, one can construct a variety of such processes, and the choice of a 
particular one is largely arbitrary. The results described later (Section 4) were 
obtained from Markov chain realizations generated according the following 
transition probabilities: 

= B-16 
OS@ exp@~(ANhkh for h@~hk < 0, k #j; (11) 

Pjj = - c Pjk s 

k#i 

Equations (11) hold for distinct pairs of states (i.e., j # k) such that Z,(j) = I,(k) 
for all s except s = so (0 < so < B - l), and Z;(j) = ISo(k), where ZtO is the logical 
complement of ISo . For all other pairs of distmct states Pi, = 0. The definition 
of P,, ensures that these transition probabilities are normalized, and it is a trivial 
excercise to show that they satisfy the “microscopic reversibility” condition 
PjPjk = Pkpkj for th e grand ensemble. Furthermore, the states all belong to the 
same ergodic class (at least for finite fip and B): A hnite sequence of steps having 
a nonzero multistep transition probability can be constructed which connects any 
pair of allowed states. The sequence may, however, be quite long with a very small 
multistep probability for some pairs. Hence, the stochastic matrix given by Eq. (11) 
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satisfies all the conditions sufficient [l 1,281 to define a Markov process which 
converges to the grand ensemble distribution, Eq. (7). We shall now summarize 
the use of Markov chain averages for several specific state functions in estimating 
thermodynamic properties. 

Thermodynamic Functions 

The stochastic matrix defined by Eqs. (11) is fixed by choosing values for the 
parameters B, Q, and /$L. The number of molecules will, in general, vary from one 
step to the next in a Markov realization, as discussed below (Section 4) in describing 
the computer implementation of this procedure. The state functions Nk , Nk2, Nk3 
and &,Nk can be averaged over a chain realization of length W by using Eq. (10). 
For finite W, these chain averages provide estimates for the corresponding grand 
ensemble averages: (N), (N2), (N3>, and PN , where PN is given by Eq. (9). 

From the first three of these averages, one can estimate the following thermo- 
dynamic functions: 

and 

<p*i = (NM)-WV, (12) 

(~~p*>/%4, = W&‘KN”) - (WI (13) 

(WP*YW~)~)B = (N&'[W3> - WWW + W'031, (14) 

where NM is the number of molecules at close packing. Equation (12) defines a 
reduced density (p*) which is the lattice-gas analog for the reciprocal of the 
reduced volume commonly used in studies of hard spheres and discs. Equations (13) 
and (14) for the first and second derivatives, respectively, of (p*) with respect to 
/3~ at constant B follow from standard grand ensemble fluctuation theory [27]. 
Although Q is also understood to be held fixed in evaluating these partial deriv- 
atives, this is not indicated by the usual subscript notation since it is not a thermo- 
dynamic variable. 

The estimate of P, obtained from the Markov chain realizations is of interest 
for two reasons. First of all, this function can be renormalized by the relation 

P(P*> = NMPN (15) 

to obtain the probability P(p*) dp* of observing a system in the grand ensemble 
with a reduced density within Ap* of p *. When the thermodynamic variables are 
given values corresponding to a single-phase region, P@*) will be a sharply peaked 
function having a unique maximum for a sufficiently large finite system and will 
become a Dirac delta in the thermodynamic limit. In a two-phase region, however, 
a bimodal P(p*) may be expected for a large enough finite system, and the existence 
of two maxima in P(p*) represents a qualitative finite-system manifestation of a 
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first-order phase transition in the corresponding infinite system [29] (see also Ref. 
[27, Appendix 91). In the second place, note that P, can be written in the form 

P, = E;‘QN(B) exP@d% (16) 

since the sum over k at fixed N of 6, R is just the definition for the lattice-gas 
petit ensemble configurational partition kfunction Q&Q. If N is so large that for 
all practical purposes it may be regarded as a continuous variable, the canonical 
ensemble chemical potential can be defined by 

#(N) = - ( a ;j,#fN ), . (17) 

For small systems, define /$i by replacing the derivative in (17) by its finite-difference 
analog: 4 ln[Q,+,/Q&. This in turn can be expressed in terms of In P, with the 
aid of (16). Then, because the Markov chain average +.#I~) = 6NsNk converges 
to PN one can take 

as an estimate of the canonical ensemble chemical potential. Thus, the grand 
ensemble Monte Carlo procedure outlined here can be used to study the “Van der 
Waals’ loop” which is generally expected in the canonical ensemble as a finite- 
system manifestation of a first-order phase transition, since a bimodal PN will 
obviously give such a loop. 

Generation of the Markov Chain 

Let us now consider the generation of a single step in the Markov chain, i.e. 
a transition from state j to state k, where the probabilities for all pairs of states 
j, k are defined by Eqs. (11). A site number s0 , between 0 and B - 1, is selected, 
with probability B-l, by multiplying B by a pseudorandom fraction fi . This 
fraction is generated from the Lehmer multiplicative pseudorandom sequence 
described by Taussky and Todd [30]. Numbers in this sequence exhibit many of 
the properties of random samples from a uniform distribution on the interval 
(0, 1). Site s,, is then examined to determine whether it is empty or occupied. 

If site s,, is empty in state j, a molecule is tentatively placed on s0 to generate 
a trial state k. This trial configuration is then checked for overlap between the 
added molecule and those already on the lattice. If an overlap is found, the trial 
state is rejected, and state j is retained as the next step in the chain. 

Otherwise, acceptance or rejection of state k depends on the sign of the quantity 
/lp(Nk - NJ, h’ h h w ic in t is case is equal to @ (since Nk - N, = +l). 

For /3~ >, 0, state k is accepted as the next step in the chain, and the lattice 
configuration is updated. 
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If &L < 0, a random fraction fi is generated from an additive pseudorandom 
sequence described and extensively tested for “randomness” by Green, Smith, 
and Klem [31], and compared with exp(--/ /3,u I). Iffi < exp(-1 &L I) = exp(&), 
state k is accepted and the lattice configuration is updated. Otherwise, state k is 
rejected and state j is retained as the next step in the chain. 

Next, consider the case that site s,, is occupied. The trial state k is then generated 
by tentatively removing the molecule from sO, and there is no possibility of creating 
an overlap. Acceptance or rejection of k thus depends entirely on the quantity 
P/4% - NJ, h h w ic is equal to -&L because Nk - Ni = - 1. 

If/$ < 0, state k is accepted as the next step in the chain, and the lattice configu- 
ration is updated. 

For /$L > 0, a pseudorandom fraction fi is generated from the additive sequence 
described above and compared with exp(- I& 1) = exp(-/3p). Iff, < exp(-&), 
state k is accepted and the necessary updating is performed. Otherwise, state j is 
retained as the next step in the chain. 

Note that, when /3~ > 0, discrimination on the Boltzmann factor is required 
only when attempting to remove a molecule. If /3~ < 0, this discrimination is 
required only when attempting to add one. The sign of /3~ is tested on entry to 
determine which of several program-modification steps are executed in the initial- 
izing sequence to eliminate superfluous tests on the sign of /3~ from the main loop. 

4. PRESENTATION AND DISCUSSION OF RESULTS 

The Monte Carlo procedure described in Section 3 was used to study the hard- 
core model on the two-dimensional triangular lattice for first, second-, and third- 
neighbor infinite repulsion. Estimates for the grand ensemble average reduced 
density, its standard deviation, and its first two derivatives with respect to &.L are 
given for several values of /$J in Table I for Q = 1, B = 81, 324, and 360; Table II 
for Q = 2, B = 360 and 480; and Table III for Q = 3, B = 392. All values of B 
were chosen so that the maximum number of molecules (N,+J which can be put 
on the lattice would form a regular close-packed configuration. The rectangular 
unit cell containing two lattice sites (see Figs. l-3) was used with m = 18,n = 10 
for B = 360; m = 20, n = 12 for B = 480; and m = n = 14 for B = 392. For 
B = 81 and 324, the customary triangular coordinate system was employed with 
arrays of 9 x 9 sites and 18 x 18 sites. 

The petit ensemble chemical potential /?@@*) was obtained by first computing 
estimates from the Markov chain averages w#$.L) [according to Eq. (18)] for each 
assigned value of /$.L, B, and Q. All the estimates for each fixed B and Q at a given N 
(and thus p*) were then weighted by W112N,++&), discarding all estimates for 
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which N,w,(&) < 0.5, to obtain weighted averages and standard deviations.4 
This averaging procedure, although arbitrary, is based upon the qualitative con- 
siderations that the overall precision of any average over a Markov chain realization 
increases in proportion to W1jz, while the best estimates of any function of UJ~ 
will be obtained in a region around the maximum of P(p*) where the Markov 
chain sampling is best. Ideally, one would prefer an estimate of the error in /$i 
for each Markov chain realization, but this appears to require a statistical analysis 
of a complexity comparable to that used by W. W. Wood in his study of hard 
discs [6] and it is doubtful whether the error estimate for &i would be sufficiently 
improved to warrant such an involved analysis. 

Figure 4 shows the reduced density as a function of chemical potential for all 
three of the hard-core models (Q = 1,2, 3) and also the “ideal” lattice-gas 

TABLE I 

Grand Ensemble Averages, as a Function of Chemical Potential, for the 
Hard Hexagon Lattice Gas with Nearest-Neighbor Exclusion 

BP <p*> 

360 - SITE LATTICE 

1.50 0.6596 f 0.0005 
1.75 0.6887 + 0.0008 
2.00 0.7287 zk 0.0017 
2.20 0.7854 41 0.0020 
2.25 0.7971 * 0.0020 
2.30 0.8152 i 0.0022 
2.35 0.8377 + 0.0021 
2.50 0.8769 & 0.0018 
2.75 0.9188 f 0.0011 

81- SITE LATTICE 

0.00 0.4881 i- 0.0009 
0.50 0.5487 & 0.0021 
1.00 0.6042 * 0.0021 
1.50 0.6723 & 0.0024 
2.00 0.7740 & 0.0057 
2.50 0.8754 & 0.0075 

324 - SITE LATTICE 

2.05 0.7338 + 0.0033 
2.25 0.7992 f 0.0039 

0.114 0.018 12 
0.126 0.052 12 
0.196 0.482 12 
0.317 0.491 20 
0.315 0.332 20 
0.345 -0.140 20 
0.326 -0.509 20 
0.224 -0.598 16 
0.106 -0.211 12 

0.132 
0.121 
0.119 
0.157 
0.254 
0.188 

0.170 
0.301 

0.4 
0.6 
0.6 
4.4 
4.2 
3.0 

5.2 
9.8 

4 Tables of these weighted averages are available from the author on request. 
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TABLE II 

Grand Ensemble Averages, as a function of Chemical Potentiab 
for the Hard Hexagon Lattice Gas With Second-Neighbor Repulsion 

PP <p*> xP*>/wr) S2<P*>/a6%4" lo-6W 
.._____~~. .-___ 

360 -SITE LATTICE 
1.25 0.5849 $ 0.0013 0.172 0.277 8 
1.50 0.6475 % 0.0022 0.363 1.406 20 
1.60 0.7038 + 0.0028 0.552 0.850 24 
1.64 0.7189 + 0.0023 0.565 0.220 36 
1.65 0.7300 f 0.0029 0.572 -0.325 24 
1.70 0.7548 f 0.0029 0.518 PO.954 20 
1.75 0.7814 -c 0.0026 0.450 ~ 1.290 20 
2.00 0.8572 i 0.0015 0.192 -0.491 12 
2.20 0.8906 c 0.0006 0.119 -0.157 12 
2.25 0.8950 :F 0.0007 0.117 --0.202 16 

480 -SITE LATTICE 
1.65 0.7182 + 0.0027 0.625 0.684 25.2 
I .66 0.7266 t 0.0028 0.670 -1.952 25 
1.67 0.7160 + 0.0027 0.626 1.095 29.6 
I .68 0.7147 .-t 0.0022 0.625 1.423 38.4 

TABLE 111 

Grand Ensemble Averages, as a Function of Chemical Potential, 
for the Hard Hexagon Lattice Gas With Third-Neighbor Repulsion 

392 -SITE LATTICE 
0.00 0.5304 * 0.0002 0.094 -0.018 7.8 
1 .oo 0.6165 i 0.0002 0.078 -0.016 20.8 
1.60 0.6606 i 0.0006 0.071 -0.010 8.6 
2.00 0.6886 l 0.0008 0.066 -0.012 6.4 

(Q = 0) for comparison. Since Fig. 4 is intended to show just the overall qualitative 
features of the Monte Carlo results, it includes only the canonical ensemble 
chemical potentials for Q = 1, B = 360; Q = 2, B = 360; and Q = 3, B = 392, 
along with three grand ensemble points and slopes for Q = 1, B = 81. The 
remainder of the data have been omitted in order to avoid unnecessary clutter. 
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0 THIRD NEIGHBOR 
0.50 EXCLUSION (Q=31 

I I I ! I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

PETIT ENSEMBLE CHEMICAL POTENTIAL, p/l 

FIG. 4. Reduced density p* as a function of the petit ensemble chemical potential j3b for hard 
hexagon lattice gases, obtained from the grand ensemble Monte Carlo calculations [see Eq. (18)l. 
The straight line segments for the nearest-neighbor case represent grand ensemble estimates for 
the reciprocal of the derivative a<p*>/a@). The exact curve for the ideal lattice gas, with only 
occupied sites excluded by the infinite repulsion, is shown for comparison. 

Indications of Phase Transitions 

The main point of interest in Fig. 4 is that the curves for both Q = 1 and Q = 2 
(but not Q = 3) each indicate a possible “phase transition”. In the former case 
this is manifested by a rather abrupt change in slope near p* = 0.75, indicating a 
possible second-order transition, while in the latter case one observes an essentially 
vertical section of the curve beginning near p * = 0.68, which may be a first-order 
transition. Since other studies confirm the existence of transitions in all three cases 
[19-211, it may seem odd that the third-neighbor exclusion model results do not 
show any indication of one. However, at the time the Monte Carlo calculations were 
completed, it appeared likely that the Q = 3 transition occured at higher densities. 
This was subsequently confirmed by Orban and Bellemans [21]. Unfortunately, 
higher densities cannot be reached with the computer programs because the Monte 
Carlo sampling procedure breaks down for /3~ greater than about 3. 

First-Neighbor Repulsion 

A more detailed plot of the canonical chemical potential vs p* in the “phase 
transition region” for Q = 1 is given in Fig. 5. As pointed out in Section 3, a 
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“Van der Waals’ loop” in &i as a function of p* is commonly regarded as the 
finite-system equivalent of a &s&order phase transition [I 11. While the existence 
of such a loop for a finite system may not always imply a first-order transition in 
the thermodynamic limit, its total absence in Fig. 5 strongly suggests that this 
“transition” is of higher order. Furthermore, none of the P(p*) curves for Q = 1 
appeared to be bimodal, although relatively broad distributions were observed 
for each B in Table I at values of /I,u (corresponding to densities in the “transition” 
region) within a small range which shifts slightly toward higher chemical potentials 
as B increases. The P(p*) curve shown in Fig. 6 for ,8t~ = 2.20, B = 360 is the 
broadest distribution observed for this value of B and represents a chemical 
potential near the center of the “phase transition” region of Fig. 5. The other 
two curves in Fig. 6 are more sharply peaked and provide typical examples of this 
function’s behavior both above and below the “transition” for the 360~site lattice. 

NEAREST-NEIGHBOR 
EXCLUSION (0-l) i 

0.80 0.90 

REDUCED DENSITY, p' 

1.00 

FIG. 5. Detail of the “phase transition region” for the hard-hexagon lattice gas with nearest- 
neighbor exclusion. Other studies indicate that the derivative a@fi)/)Iap* approaches zero in the 
thermodynamic limit at a reduced density of about 0.84, which is within the density range where 
the Monte Carlo results show a noticeable flattening in the plot of petit ensemble chemical 
potential (@) vs reduced density (p*). 
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5 2.00 - 
z 
;;: 
g 1.00 - 
a 

0.00 
0.60 0.70 0.80 0.90 

REDUCED DENSITY. p’ 

FIG. 6. Monte Carlo estimates for the probability density function PC,*) [see Eq. (1511 at 
grand ensemble chemical potentials below, within, and above the “phase transition” region of the 
hard-hexagon lattice gas with nearest-neighbor exclusion. The broadening of this distribution 
for & = 2.30 is one of the observations Tuggesting a possible phase transition. 

It seems fairly safe to conclude from these data that the first-neighbor hard-core 

lattice gas does not have a first-order transition. To go beyond this point and 

attempt to determine whether a transition of higher order exists necessarily becomes 

more speculative because the Monte Carlo data are rather limited. However, it 
seems worthwhile to do this for two reasons. Firstly, one might expect that the 
detection of a phase transition by Monte Carlo studies would be somewhat more 
difficult when it is not first-order and it is of interest to obtain a qualitative indi- 
cation of just how difficult it may be. Secondly, in contrast to the first-order case, 
little is known about the behavior of Markov chain realizations for finite systems 
in a region where the corresponding infinite system has, say, a second-order 
transition, and even a crude example is interesting. 

As one can see in Fig. 5, the curve for the canonical chemical potential as a 
function of reduced density exhibits a relatively small slope and a change from 
negative to positive curvature for p* between approximately 0.77 and 0.85. (This is 
also apparent from the grand ensemble results in Table I.) The isothermal com- 
pressibility, which is essentially the reciprocal of this slope, thus becomes rather 
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large over a narrow range in density. Assuming that a transition exists and that 
it is not first order, consider two possibilities: (A) the isothermal compressibility 
has a finite discontinuity at some p*, which corresponds to a transition of second- 
order in the Ehrenfest sense; or (B) the isothermal compressibility becomes infinite 
at some p* to give a “X-point” type of transition. 

D. M. Burley [32] has studied several lattices with first-neighbor repulsions, 
using the Bethe and related approximations. For “loose-packed” lattices such as 
the two-dimensional square net (which is the most relevant lattice for our present 
consideration), he was able to extend both the Bethe and ring approximations so 
they could be used to take into account holes in a close-packed configuration 
and thus to get approximate high-density equations for the free energy. The usual 
forms of these approximations were used to obtain similar equations valid at low 
density. The high density solution in both approximations is the more stable 
(i.e., has a lower free energy) in comparison with the low density solution in the 
same approximation, but in both cases below a “critical density” the high density 
solution corresponds to imaginary values of certain physically observable quantities 
and thus becomes unrealizable. Furthermore, in both approximations the curves 
join at the “critical density” in such a way that there is a second-order transition 
of type (A) above with a large but finite discontinuity in the isothermal compres- 
sibility. 

D. S. Gaunt and M. E. Fisher [33] used PadC approximants to extend exact 
high- and low-density series expansions for several thermodynamic functions of 
first-neighbor hard squares on the quadratic lattice. They concluded that this 
model has a second-order transition, and that the compressibility probably remains 
finite at the transition point. However, they could not definitely exclude the pos- 
sibility of a very weak singularity, such as the logarithmic divergence of the 
compressibility suggested by extrapolating the exact properties of semi-infinite 
square lattices to obtain estimates for the corresponding thermodynamic limits 
[20, 34, 351. These extrapolations provide especially convincing evidence that this 
model has a “h-point” transition. 

Fisher’s superexchange model [36] has an infinite repulsion between nearest- 
neighbor molecules on the square lattice as well as a finite attraction between 
second-nearest neighbors on alternate squares. Fisher was able to derive an 
analytical expression at one temperature for the partition function and showed 
that the pressure is a continuous function of the density. However, it has a zero 
first derivative at pt* RS 0.706, and the isothermal compressibility becomes 
logarithmically infinite at pt*. As T -+ co, this model reduces to the simple hard 
square lattice gas, and Fisher speculated that the “A-point” nature of this transition 
might remain essentially unchanged as T increases. This speculation now appears 
to be correct. 

Finally, the h-point nature of the transition for the first-neighbor hard hexagon 
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lattice gas was rather convincingly shown, after the Monte Carlo study was 
completed, by Gaunt [19], by Runnels and Combs [20], and by Orban and 
Bellemans [21]. Gaunt used the Padt approximant approach, and the others used 
what Runnels has called “exact finite methods”. 

The evidence is now very strong that a hard-core interaction extending to first- 
neighbor sites on both the triangular and the quadratic lattice produces a 
“continuous” or “second-order” transition and that the isothermal compressibility 
has a logarithmic singularity at the transition point. Thus, the isothermal com- 
pressibility for the first-neighbor case, considered as a function of density, resembles 
the ordinary Ising heat capacity as a function of temperature in zero field. The 
behavior observed by Burley is not inconsistent with this. Applying the sume 
approximations he used to the two-dimensional Ising model gives finite discon- 
tinuities in the heat capacity near the critical temperature, whereas the exact 
solution has a logarithmic singularity at T, . To determine whether the Monte 
Carlo results are consistent with this behavior, the petit ensemble chemical 
potential was differentiated numerically (using a centered two point difference 
formula) with respect to density to obtain an estimate for (a#/ap*)r . This 
derivative was then used in the thermodynamic relation: 

to estimate the quantity pK/fi, where K is the isothermal compressibility. The 
results of this calculation are shown in Fig. 7, along with a few additional points 
obtained from the grand ensemble averages. No attempt was made to smooth the 
data in any way, and the scatter in the petit ensemble results is quite large, 
especially in the interesting region. Nevertheless, one might plausibly speculate 
that Fig. 7 represents an “experimental” measurement near a h-point, even 
without the other evidence cited above. 

The solid curve in Fig. 7 below the transition region was obtained from the 
following series (which is a simple rearrangement of the fugacity series): 

(1 - f *)@P - ln PI 
2Bz*p* = 1 + c W%*)Y [r$) B;+2 - (q) B;+,] (p*)n, 

na1 
(20) 

where B,* = B,d-%+l, 6 is the number of lattice sites covered by one molecule, 
and B, is the n-th lattice-gas virial coefficient. The right side of (20) was then written 
as a continued fraction of the form 

F(p*) = l/l -t c,p*/1 + c,p*/1 + .*., (21) 

and the virial coefficients through B, given by Burley were used to obtain c1 , c2 , cg , 
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and c4. This gives the fourth approximant A&*) to the continued fraction 
expansion which can be written as the ratio of two second-degree polynomials 
in p*. When the resulting expression is substituted for the RHS of (20), differentia- 
tion with respect to p* followed by rearrangement and the use of (19) gives 

pK -l t-1 B 
= 1 + 2B,* ( l p*,* )[p* $$*’ + fe;; 1. (22) 

The estimate of p (K/p) calculated from (22) has a singularity5 at p* = 0.78 and 
has a qualitative similarity to the low-density Monte Carlo results. The solid curve 
above the transition region in Fig. 7 was obtained in a similar way by using the 

1.2 I -77 “,IQ NEAREST-NEIGHBOR EXCLUSION . (D=I) 

. 1.0 - 
. PETIT ENSEMBLE 
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+ GRAND ENSEMBLE 

3 
G 
z 0.8 - 
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E 
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” 0.6 - 

. . . . 

* . 

d 0.0 * ’ ’ ’ ’ ’ _I_ ’ _I^ ’ ^I^ I _ 
0.4 0.5 0.6 0.L “.LI u.3 Id 

REDUCED DENSITY, p 

FIG. 7. Monte Carlo results for the reduced isothermal compressibility as a function of 
reduced density for the hard-hexagon lattice gas with nearest-neighbor exclusion. The solid curves 
are based on the first few terms in exact high- and low-density series expansions. The location of 
the maximum in both the petit and the grand ensemble results is near the estimates of Runnels 
and Combs, Orban and Bellemans, and Gaunt for the reduced density at the “X-point” transition 
for this model. 

first two coefficients in an expansion of the grand partition function as a power 
series in e-@@. This estimate for p(K/p) agrees well with the Monte Carlo results 
above p* M 0.92 and has no singular behavior. However, including additional 
terms in this expansion would introduce a singularity. 

6 The location of this singularity is surprisingly close, considering that only 6 virial coefficients 
were used, to Gaunt’s estimate of pi * = 0.832 f 0.008 and Runnels’ estimate (0.837 I 0.020) 
for the density at the transition point. 
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The grand ensemble estimates for p(K//3), indicated by the crosses in Fig. 7, 
are subject to considerably less numerical uncertainty since no differentiation is 
required, but they exhibit only a rather unimpressive broad maximum in the 
transition region. This is again similar to the behavior of the Ising heat capacity 
for a finite system, as shown in a Monte Carlo study by C. P. Yang [24] on the 
square lattice. He found that, for finite systems, the Ising heat capacity has a 
broad maximum near T, which becomes higher and narrower as the lattice size 
is increased, and that the position of the maximum shifts toward the correct 
critical temperature. 

Second- Neighbor Repulsion 

Figure 8 shows a plot of the canonical chemical potential as a function of reduced 
density near the phase transition for Q = 2, B = 360 and 480, and exhibits a 

1 / 

SECOND-NEIGHBOR +t 

EXCLUSION(Q-2) 

-i 

REDUCED DENSITY, p* 

FIG. 8. Detail of the “phase transition region” for the hard-hexagon lattice gas with second- 
neighbor exclusion. Dependence of these Monte Carlo results on lattice size is most pronounced 
in the neighborhood of the “Van der Waals” loop which is probably a finite-system manifestation 
of a first-order phase transition in the thermodynamic limit. Orban and Bellemans’ results indicate 
a first-order transition at /3p = 1.75, with a tie-line extending from p* R+ 0.685 to p* m 0.801. 
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possible first-order transition for both values of B. For the smaller lattice the 
chemical potential is essentially constant for p* between 0.68 and 0.74, while for 
the larger lattice the chemical potential shows a very shallow “Van der Waals’ 
loop” (if one ignores the large error flags) between p* m 0.69 and p* w 0.76. 
Thus the density gap across the transition appears to be approximately 0.06 or 
0.07, the same order of magnitude as the reduced density difference of about 
0.03 which has been estimated for the hard disc transition by Alder and Wainwright 
and by W. W. Wood [Ill. This qualitative agreement encourages one to suppose 
that this “transition” may indeed be essentially the same as that for hard discs 
(although it occurs at a different density), and hence is a probable fluid-solid 
type of transition.‘j It is certainly different from the first-order transition for the 
ordinary lattice-gas with finite attractions between neighboring molecules. This 
transition has a very much larger density gap and is therefore generally regarded 
as a model for the liquid-gas transition. 

A rather odd feature of the results shown in Fig. 8 is the appearance of a “loop” 
in /3fi vs p* for B = 480 but not for B = 360. This is somewhat unexpected since 
such small-system loops must (as B increases indefinitely) eventually become 
smaller in extent and finally disappear in the thermodynamic limit according to 

c SECOND-NEIGHBOR EXCLUSION (O=Z) 

J 

0.60 0.70 0.60 0.90 

REDUCED DENSITY, P’ 

FIG. 9. Monte Carlo estimates for the probability density function P(p*) at grand ensemble 
chemical potentials within the “phase transition region” of the hard-hexagon lattice gas with 
second-nearest neighbor exclusion. The shape changes from a broad distribution with an essentially 
flat top to a bimodal distribution when the size of the lattice is increased from 36Gh30 sites. 
Thus, the finite-system indications of a first-order transition become more pronounced with 
increasing size in this size range. Similar behavior for hard discs has been reported by W. W. Wood. 

6 Orban and Bellemans have confirmed the existence of this first-order transition at /$ = 
1.75 f 0.005, with reduced coexistence densities of 0.685 =k 0.015 and 0.801 f 0.005. They 
used an “exact finite method.” The Monte Carlo results differ from theirs primarily due to small 
system effects. 
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Van Hove’s theorem [37]. It is certainly possible that this is simply a numerical 
artifact arising from the relatively large errors in the Monte Carlo results, but this 
may be a real effect due to the very small size of the systems considered here. 
Some support for the latter view is given by the P(p*) curves shown in Fig. 9 for 
these two values of B. For the smaller lattice this distribution is quite flat with no 
apparent bimodal behavior while P(p*) for the larger lattice has two well-developed 
peaks. Although no explicit bounds can be given, the errors for these Monte 
Carlo estimates are probably considerably smaller than those for the canonical 
chemical potential since the numerical differentiation required to obtain &i from 
P(p*) will magnify any uncertainty. Hence, the difference between the two P(p*) 
curves and therefore the derived chemical potential curves is very likely not a 
numerical artifact but an apparently complicated small-system effect. 

A more detailed study of the B-dependence of thermodynamic properties for 
this model would provide an interesting comparison with approximate macro- 
scopic theories of a first order transition molecules confined to nodes of a regular lattice and interacting pairwise with 

finite 

attractions can be extended in a simple way for application to a class of lattice 
models in which the pair interaction is an infinite repulsion. Parameters for the 
calculation include lattice type and dimensionality, the boundary conditions, the 
size (i.e., the number of lattice sites, B) and shape of the lattice, the maximum 
order Q of neighbors excluded by the molecular hard core, and the combination 
/3p where /3 = (kT)-l and TV is the chemical potential per molecule. In this study 
we have considered only the two-dimensional triangular lattice with periodic 
boundary conditions for Q = 1,2, and 3. The size and shape were chosen appro- 
priately for each Q so that when the maximum possible number of molecules 
(i.e., NM , which depends on B, Q, and the shape) is placed on the basic lattice, 
its periodic repetition generates an infinite regular close-packed configuration. 

This investigation has also given some evidence for phase transitions. For 
Q = 1, nothing is observed in any of the results which can be considered indicative 
of a first-order transition, but there is an instability which was subsequently 
identified by other investigators [19,20] as a “second-order” transition with an 
infinite isothermal compressibility at the transition point. It is doubtful that 
Monte Carlo studies are very useful for studying this type of transition. Assuming 
this transition is indeed “second-order”, the fact that no first-order behavior is 
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observed offers some reassurance that the Monte Carlo method can detect the 
difference between a first-order transition and one of higher order. The most 
interesting qualitative result arising from these calculations is the appearance of a 
possible first-order transition for Q = 2, in agreement with Orban and Bellemans’ 
study [21]. The second-neighbor hard-core lattice gas provides a much simpler 
model than hard discs for investigating the first-order “fluid-solid” transition 
which appears to be associated with the repulsive part of intermolecular potentials 
and as such may be more amenable to analytic solution. 

Although the appearance of a first-order transition at Q = 2, if it is real, leads 
one to expect no further pronounced qualitative changes for increasing Q, larger 
values of Q should be considered both to furnish additional insight into the nature 
of this transition and to help judge its quantitative relevance to the continuum gas 
of hard discs. Unfortunately, the Markov chain sampling procedure outlined in 
Section 3 becomes considerably less efficient at /3~ m 3 as Q increases and breaks 
down completely at about this point for Q = 3. No transition was observed 
for this model with /3~ < 3 but an heuristic argument based on scaling the lattice 
results to agree more closely with discs indicates that the transition may occur 
considerably above this point, again in agreement with Orban and Bellemans [21]. 
The techniques they and others have developed since about 1965 seem to be 
generally more powerful than Monte Carlo methods for studying these models. 
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